概要
Field calculationでは 、Total pressure (全圧)、Vorticity (渦度)などのシミュレーションの追加出力を定義することができます。
新しいField calculationは、図1のようにResult controlタブで定義することができます:
| 重要 |
|
Field calculationの出力結果に興味がある場合、必ずシミュレーションの実行前に設定を行ってください。 Result controlは、すでに実行済みのシミュレーションに遡って適用されることはありません。 |
以下では、SimScaleで利用可能な各Field calculationオプションについて説明します。
Pressure fields (圧力場)
Pressure fields (圧力場)制御は Incompressible (非圧縮性)解析タイプでのみ利用可能です。この場の計算では、ユーザーは一連の異なる出力を定義できます。特に、 Total pressure (全圧)と Pressure coefficient (圧力係数) (\(C_p\) として知られています。以下に便利な設定を示します。
Total pressure (全圧)
Incompressible (非圧縮性)解析の場合、ポストプロセッサーに表示されるデフォルトの圧力値はゲージ静圧です。全圧を示すスカラーを追加することも可能です。以下にResult control設定のサンプルを示します:
プラットフォームはポストプロセッサーで全圧を表示するために以下の式を実行します:
$$P_{Total} = P_{Gauge,\ static} + P_{Reference} + 0.5\rho U^2 \tag {1}$$
ここで
- \(P_{Total}\) はポストプロセッサー内の新しいスカラーで、Total pressure (全圧)
- \(P_{Gauge,\ static}\) はポストプロセッサ内の通常のゲージ静圧
- \(P_{Reference}\) は図2の Reference pressure (基準圧力)です。ここでシステムの絶対圧を定義するのが1つの通常のアプローチであることに注意してください。
- \(\rho\) は流体の密度
- \(U\) は流体の局所速度
Pressure coefficient (圧力係数)
Pressure coefficient (圧力係数)のResult controlは、以下の構成で作成できます:
図3では、ユーザーはグローバル座標系に基づいて Free stream velocity (自由流速)を 定義する必要があります。入力設定に基づき、SimScaleは以下の式を使用して圧力係数\(C_p\) を計算します:
$$C_p = \frac{P_{Gauge,\ static}\ – \ P_{Free\ stream}}{0.5\rho U^2} \tag {2}$$
ここで
- \(C_p\) は圧力係数
- \(P_{Gauge,\ static}\) はポストプロセッサーでの通常のゲージ静圧
- \(P_{Free\ stream}\) は自由流れ圧力。非圧縮性解析の場合、この値は通常ゼロパスカルです。
- \(\rho\) は流体の密度
- \(U\) は流体の速度で、図3で定義したFree stream velocity (自由流速)から計算されます。
Turbulence (乱流)
Result control のTurbulence (乱流)では、ポストプロセッサで yplus 値を評価することができます。このパラメータは、外部空気力学やターボ機械などのアプリケーションで非常に重要です。
このResult controlは、Incompressible (非圧縮性)、Compressible (圧縮性)、および Convective Heat Transfer (対流熱伝達) 解析タイプで使用できます。 Result controlのTurbulence (乱流)を使用するには、Turbulence model (乱流モデル)が Laminar (層流) であってはならないことに注意してください。
Vorticity (渦度)
物理的な観点から、渦度は、各点での最大「循環」に等しい大きさを持つベクトルとして理解することができます。さらに、このベクトルは各ポイントの循環平面に対して垂直な方向を向いています 1 。
SimScaleポストプロセッサーでは、渦度は大きさだけでなく、x, y, z方向の成分を含むベクトルで表されます。
数学的観点からは、渦度は式3のように速度ベクトルの回転と定義されます:
$$ Vorticity = \nabla \textrm{🗙} \vec{U} \tag{3}$$
| 注意 |
| Vorticity (渦度)のResult controlは、 Incompressible (非圧縮性)およびIncompressible LBM (非圧縮性LBM)解析タイプで使用できます。 |
Mean age of fluid (平均空気齢)
Mean age of fluid (平均空気齢)のResult controlは、任意の流体(例: 空気または水)の局所的な平均大祭時間を秒単位で計算するために使用できます。これは、粒子が流入口から流出口まで移動するにあたります。
流体年齢の計算に使用される拡散項は、有効または無効にすることができます。有効にすると、 Turb.Schmidt number (乱流シュミット数) (\(Sc_{t}\)) と Diffusion coefficient (拡散係数) \(D\) を定義できます。拡散係数は層流拡散率を制御します。乱流の場合、全体の拡散係数は次のように計算されます:
$$\Gamma= D \rho + \frac{\mu_{eff}}{Sc_{t}} \tag{4} $$
ここで、\(\Gamma\) は拡散項、\(\mu_{eff}\) は実効粘度です。
一般的な 拡散係数は次のとおりです:
このResult controlは、Incompressible (非圧縮性)、Convective Heat Transfer (対流熱伝達)、および Conjugate Heat Transfer v2.0 (共役熱伝達 v2.0)シミュレーションで使用できます。平均空気齢の理論値は次式で与えられます:
$$Mean\ age\ of\ fluid = \frac {V}{Q} \tag{5}$$
ここで、\(V\) は試験環境の体積、\(Q\) は入口での体積流量です。
Wall shear stress (壁面せん断応力)
壁面せん断応力のResult controlは、 Incompressible (非圧縮性)、Compressible (圧縮性)、Convective Heat Transfer (対流熱伝達)、および Conjugate Heat Transfer v2.0 (共役熱伝達 v2.0)シミュレーションで設定できます。出力として、x, y, z方向の壁せん断応力成分が得られます。さらに、壁せん断応力の結果ベクトルも利用できます。
Thermal comfort parameters (熱的快適性パラメータ)
このResult controlは、ASHRAE 55とISO 7730規格の両方の方法に準拠しています。Result controlでThermal comfort parameters (熱的快適性パラメータ)を設定することで、ポストプロセッサーに2つのスカラーが追加されます:
- Predicted Percentage of Dissatisfied (PPD: 予測不満足者率)
- Predicted Mean Vote (PMV: 予想平均申告)
Clothing Coefficient (着衣量)、Metabolic rate (代謝率)、Relative humidity (相対湿度)など 、一連のパラメータがPPDとPMVの値に影響を与える可能性があります:
熱的快適性パラメータ結果制御のセットアップに関する詳細については、こちらのページをご覧ください。
| 注意 |
| Thermal comfort parameters (熱的快適性パラメーター)のResult controlは、Convective Heat Transfer (対流熱伝達)およびConjugate Heat Transfer v2.0 (共役熱伝達 v2.0)解析タイプで使用できます。 |
Friction velocity (摩擦速度)
このField calculation は、壁せん断応力を決定するために使用できる摩擦速度\(u_\tau\) を計算します:
$$u_\tau = \sqrt\frac{\tau}{\rho} \tag {6}$$
ここで、\(\tau\) は壁せん断応力、\(\rho\) は流体密度です。摩擦速度と壁面せん断応力はともにベクトルであるため、壁面せん断応力を計算するときにベクトルの方向を考慮するように式 6 を並べ替えることができます:
$$\vec {\tau} = \rho\ mag\ (\vec{u_\tau})\vec{u_\tau} \tag{7}$$
ここで、\(mag\ (\vec{u_\tau})\) は摩擦速度ベクトルの大きさを示します。
| 注意 |
| このResult controlは、 Incompressible LBM (非圧縮性 LBM)解析タイプでのみ使用できます。壁面せん断応力場を計算するには、SimScaleの結果を ParaView に取り込み、Calculatorフィルターを使用することが可能です。 |
Surface normals (表面法線)
Surface normals (表面法線)のResult controlは Incompressible LBM (非圧縮性 LBM)ソルバーでのみ使用できます。このResult control項目は、主に ParaViewなどのサードパーティソフトウェアでのポスト処理に使用されます。表面法線はSimScaleポストプロセッサーでの可視化には使用できません。
Wall heat flux (壁面熱流束)
このフィールド計算は、Conjugate Heat Transfer v2.0 (共役熱伝達 v2.0)およびConjugate Heat Transfer IBM (共役熱伝達 IBM) シミュレーションで使用できます。モデルの各界面および境界壁における熱流束(表面積あたりの電力単位(\(W/m^2\)))を取得します。また、Heat transfer coefficient (熱伝達率)や Nusselt Number (ヌッセルト数)など 、熱伝達を記述する有用な量を自動的に計算するオプションもあります:
- Heat transfer coefficient (熱伝達率): 固体表面のある点における熱流束と、その点の温度と 基準温度との差に関係する比例定数の計算を切り替えます。
- Reference temperature (基準温度): 熱伝達率の計算に使用する温度を選択する方法です。シミュレーション結果からWall adjacent cell (壁に隣接するセル)をサンプリングするか、 Fixed value (固定値)を入力します。
- Nusselt Number (ヌセルト数): 界面での対流熱伝達と伝導熱伝達の比率の計算を切り替えます。この量の計算には、 Reference length (参照長さ)のパラメータを入力する必要があります。
- Reference length (参照長さ): ヌセルト数の計算に使用される流体領域の特徴的な寸法です。参照長さは表面法線方向(例えば球や円柱の直径)に取るのが理想的ですが、複雑な形状の場合は体積対表面積比を使用することもできます。
熱伝達率 (\(h\))は対流熱伝達方程式(ニュートンの冷却の法則)に現れ、熱流束(\(Q\))と基準値(\(T_{ref}\))との温度差を関連付けます:
$$ Q = h A_s(T_s – T_{ref}) \tag{8}$$
ヌセルト数 \(Nu\) は熱伝導率\(h\) 、参照長さ\(L\) 、熱伝導率\(\kappa\) と関連付けることができます:
$$ Nu = \frac{Convective Heat Transfer}{Conductive Heat Transfer} = \frac{ h L }{ \kappa} \tag{9}$$
熱伝達率と ヌセルト 数は流れの熱伝達に関する特性であり、固体領域ではなく流体領域に対してのみ計算されることに注意してください。
| 壁面熱流束とふく射 |
|
界面や境界でのふく射による熱伝達は、対流や伝導など流れによる熱伝達のみに関係するため、壁面熱流束の計算では考慮されません。エネルギー収支計算を行う際には、この点に留意してください。 |